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Positive Effects of Early Androgen Therapy on
the Behavioral Phenotype of Boys with 47,XXY
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47, XXY occurs in up to 1 in 650 male births and is associated with androgen deficiency, neurodevelopmental
delays, and atypical social-behaviors. Previously, we showed that young boys with 47, XXY who received early
hormonal therapy (EHT) had significantly improved neurodevelopment. The objective of this follow-up studywas
to examine the effects of EHT on social behavior in boys with 47, XXY. The study consisted of boys prenatally
diagnosed with 47, XXYwhowere referred for evaluations. Twenty-nine boys received three injections of 25mg
testosterone enanthate and 57 controls did not receive EHT. Behavioral functioning was assessed using the
Behavior Rating Inventory of Executive Function, Social Responsiveness Scale, 2nd Ed., and the Child Behavior
Checklist for Ages 6–18. The hypothesis that EHT may affect behavior was formulated prior to data collection.
Questionnaire data was prospectively obtained and analyzed to test for significance between two groups.
Significant differences were identified between group's scores over time in Social Communication (P¼ 0.007),
Social Cognition (P¼ 0.006), and Total T-score (P¼0.001) on the SRS-2; Initiation (P¼0.05) on the BRIEF; and
Externalizing Problems (P¼0.024), Affective Problems (P¼0.05), and Aggressive Behaviors (P¼ 0.031) on the
CBCL. This is the third study revealing positive effects of EHT on boys with XXY. There was a significant
improvements associated with the 47, XXY genotype in boys who received EHT. Research is underway on the
neurobiological mechanisms, and later developmental effects of EHT. © 2015 Wiley Periodicals, Inc.
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INTRODUCTION
47, XXY, also known as Klinefelter
syndrome (KS), is the most common X
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cognitive deficits, although varying in
severity, are common in childrenwith 47,
XXYand include language- based learn-
ing difficulties, executive dysfunction,
and speech delay [Graham et al., 1988;
Ratcliffe, 1999; Samango-Sprouse and
Rogol, 2002; Simpson et al., 2005;
Kompus et al., 2011; Verri et al., 2010;
Gropman & Samango-Sprouse, 2013].
These, in turn, are thought to contribute
to the complex social and behavioral
phenotype in school-age children with
47, XXY that may include both internal-
izing (e.g., – anxiety, social isolation) and
externalizing (e.g., – aggression) behav-
iors and atypical social and peer inter-
actions [Simpson et al., 2003; van Rijn
et al., 2008; Bruining et al., 2009; Bishop
et al., 2011; Ross et al., 2012; Samango-
Sprouse et al., 2014].

Androgens, specifically testosterone,
are known to have a broad influence on
neurological development, cognitive
functioning, and social behavior in males
beginning in- utero and continuing
through adulthood [Arnold and Bree-
dlove, 1985; Knickmeyer and Baron-
Cohen, 2006; Genazzani et al., 2007].
There are two testosterone surges that
affect male neurodevelopment before
puberty: an intrauterine surge occurring
between8 and24weeks gestation and the
neonatal surge which begins two weeks
after birth and continues until at least
twenty-four weeks [Forest et al., 1973;
Beck-Peccoz et al., 1991; Finegan et al.,
1992]. This surge during infancy (also
called “mini-puberty“) is known to have
profound effects on brain development,
masculinzation of the infant boys as well
as effect play, social interactions on male
infants [So̸rensen et al., 1981]. These
early androgens, both during prenatal
development and early infancy, influence
gray matter volume as well as cortical
maturation, which have been shown to
have an organizational effect on social
behaviors, cognitive abilities, language
function, anxiety and fear reactivity
during childhood and adolescence
[Knickmeyer and Baron-Cohen, 2006;
Bergman et al., 2010; Raznahan et al.,
2010; Lombardo et al., 2012; Nguyen
et al., 2013].

While androgen deficiency (and
the positive impact of testosterone
replacement) in adolescents and adults
with 47, XXY has been well charac-
terized, much less is known about the
levels and effects of early androgens in
children with 47, XXY [Hier and
Crowley Jr, 1982; Lanfranco et al.,
2004; Wikstr€om et al., 2006; Aks-
glaede et al., 2009]. Ratcliffe et al.
(1994) documented comparable fetal
levels of testosterone in XXY males
and XY controls between 16 and
20 weeks gestation; however, the
window of opportunity to document
androgen deficiency in utero may be
small, as androgens may begin to rise as
early as 9 weeks gestation, peak
between 11 and 15 weeks, and begin
to decline by 17 weeks [Ratcliffe et al.,
1994; Finegan et al., 1989]. Two recent
studies have observed lower levels of
circulating androgens and a diminished
postnatal surge in androgens in infants
and young boys with 47, XXY [Lahlou
et al., 2004; Ross et al., 2005]. There
have also been several studies docu-
menting low muscle tone, small testes
and reduced phallic size reflective of
early androgen deficiency in infants
with 47, XXY [Lahlou et al., 2004;
Ross et al., 2005; Zeger et al., 2008;
Radicioni et al., 2010].

We hypothesized that the EHTmay
actually “prime the pump“ of the
androgen receptors in boys with XXY,
which would then result in improve-
ment in subsequent neurodevelopmen-
tal performance in the treated boys by
supplementing their infantile androgen
deficiency. We showed that children
with 47, XXY who received short-
course androgen therapy for diminished
phallus size during infancy and prior to
15 months, had significantly improved
cognitive functioning, visual- motor
skills, and language development com-
pared to 47, XXY controls who did not
receive early hormonal therapy (EHT)
[Samango-Sprouse et al., 2013b]. The
positive impact of EHT on neuro-
cognitive development has also been
documented in a cohort of boys with 49,
XXXXY [Samango-Sprouse et al.,
2011]. Given the impact of early
androgens on neurodevelopment and
cognitive function, we hypothesize that
boys with 47, XXY who received early
androgen replacement therapy may also
have significantly improved social skills
and behavioral functioning in compar-
ison to 47, XXY boys who did not
receive treatment.
METHODS

Study Subjects

The study population consisted of 86
boys who were prenatally diagnosed
with 47, XXY. These patients were from
the same cohort of boys tested at 36 and
72 months of age in order to more
comprehensively examine the possible
longitudinal effects of EHT from early
infancy throughout childhood. Patients
were referred to the Neurodevelop-
mental Diagnostic Center in Davidson-
ville, MD, specializing in the
neurodevelopment assessment of chil-
dren with genetic disorders. Referrals
were made from across the United States
and neurodevelopmental evaluations
were performed from 2009 to 2013.
The Focus Foundation, a non-profit
research organization for X and Y
chromosome variations, provided fund-
ing to families that could not afford the
evaluations in order to minimize ascer-
tainment bias. Medical records were
obtained for each patient that confirmed
the 47, XXY diagnosis via karyotype
and that documented the administration
of any hormonal replacement.

Patients were referred by their
primary care physician, their clinical
geneticists, or were self-referred by
parents. Patients were then evaluated
by pediatric endocrinologists through-
out the country. Twenty-nine of the
referred patients received one intra-
muscular (IM) injection of 25mg tes-
tosterone enanthate once a month for
three months for diminished phallic size.
This IM dosage of testosterone has been
shown to be effective for increasing
penis size in infants and children
[Guthrie et al., 1973; Bin-Abbas et al.,
1999]. The timing of testosterone
injections was determined on an indi-
vidual basis and ranged from 4 to
15 months. No additional testosterone
injections were given to any patient after
this time and hormonal levels were not
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typically obtained before or after these
initial injections.

Fifty-seven boys with 47, XXY
who did not receive any testosterone
replacement therapy served as controls
and were selected based on similarity
with the EHT group’s mean age and
parent’s highest level of obtained edu-
cation (reflective of socio-economic
status). Parental education was coded
from 0 to 7 consistent withHollingshead
Four Factor Index of Socio Economic
Status (SES) with 7¼ graduate/profes-
sional training, 6¼ standard college or
university graduation, 5¼ partial col-
lege, at least one year of specialized
training, 4¼ high school graduate, 3¼
partial high school, 10th or 11th grade,
2¼ junior high school, including 9th
grade, 1¼ less than 7th grade, 0¼ not
applicable or unknown [Hollingshead,
1975].

The two groups of subjects had
similar number of visits for neuro-
developmental evaluation (treated
group avg.¼ 10.2; untreated group avg.
¼ 9.2) between time of diagnosis and
108 months. All families were asked to
complete behavioral questionnaires at
each visit and were unaware of which
forms were used for this research study.
All boys were referred for early inter-
vention services including PT, OT and
Speech and Language services as
needed. The majority of boys in both
G

Fathers
Mean age� STD

37.9� 5.
Age range

30–51
% College degree

90%
Mothers
Mean age� STD

37.4� 4.
Age range

28–49
% College degree

95%
groups continue to receive clinical care
at our center.
Evaluations

Parental consent was obtained for each
study participant. This included a de-
tailed description of the study protocol
approved by the Western Institutional
Review Board (WIRB). Standardized
testing was selected based on the
subject’s chronological age and included
the Behavior Rating Inventory of
Executive Function (BRIEF), Child
Behavior Checklist for Ages 6–18
(CBCL), and the Social Responsiveness
Scale, Second Edition (SRS-2). Exam-
iners and scorers of the standardized
assessments were blinded to which boys
with XXY who had received EHT.
Statistical Analyses

Neurodevelopmental data was divided
into two groups based on those infants
who received androgen treatment
(group 1) and those who did not (group
2). All test scores within the appropriate
age range for each neurodevelopmental
subtest were retrospectively obtained
and used in the analyses. If multiple
scores for an individual patient on a
given subtest were available, all test
scores falling within the appropriate
age range for that subtest were used in
TABLE I. Parent Demographics

roup 1: Treated Group 2:

2 37.9� 6.6

27–46

77%

8 36.8� 5.4

27–45

80%
the analyses. Test scores for each patient
were de- identified according to the
WIRB-approved protocol and an off-
site biostatistician who had no inter-
actions with patients performed all
analyses.

Random mixed-effects models
were used to determine significant
differences between group scores taking
into account the dependencies between
repeated observations for each subject.
The results produced in the random
mixed-effects model is a linear regres-
sion model accounting for both within-
subject factors (i.e. – the repeated
measurements at each visit) and be-
tween-subject factors (i.e., – between
the groupwho received testosterone and
the group that did not). This was done
using STAT’s ‘xtreg’ command, which
uses a weighted average of the within-
subject effects and the between-effects.
Therefore this model accounts for the
effects of the testosterone treatment as
well as the effects of the subjects being
measured at different points in time.
Significant treatment-by-visit effects
indicate whether the average change in
the dependent variable (questionnaire
scores) over the various visits is statisti-
cally different between the two groups.

Significant group differences were
also estimated excluding multiple visits
per individual. The evaluation for each
individual that was closest to 108months
Untreated P-value

0.97

0.23

0.68

0.12
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of age was selected and used in the
analyses. Significant differences between
group’s scores were determined using
the two-sample t- test if normality was
present and the Wilcoxon- Mann–
Whitney test if normality was absent.
The Skewness–Kurtosis test was used to
assess normality of the groups.

The null hypothesis was that there
would be no statistically significant
differences between the mean scores of
group 1 and group 2 on any behavioral
assessment.
RESULTS

Parental demographic information for
each group is presented in Table I. The
mean maternal and paternal ages were
similar and not statistically different
between the two groups (P> 0.05).
The majority of mothers and fathers in
both groups had at least 1 year of
specialized training at a post-secondary
institution (Hollingshead education
code �5). The percentage of post-
secondary degrees in mothers and
fathers was not statistically different
between the two groups. Each group
also represented an equal distribution of
first, second and third-born children
(results not shown) and the age of
patients ranged from 9 years to 11 years
in both groups of boys with 47, XXY.

On the SRS-2, the linear mixed
effects model revealed a significant
difference between the group that
TABLE II. Linear M

Test

Subtest Mean

SRS
Total T-score 53.3
Social communication 53.07
Autistic mannerism 52.41
Social cognition 52.74

BRIEF
Initiation 50.94

CBCL
School 42.06
Social problems 53.98

aDenotes significance at the 5% significance l
received testosterone treatment and the
untreated group in social cognition
(P¼ 0.002), social communication
(P¼ 0.001), social motivation
(P¼ 0.004), autistic mannerisms
(P¼ 0.005), and total T- score
(P¼ 0.001) (Table II). Additionally,
there were significant differences be-
tween scores at various visits in social
communication, social motivation, au-
tistic mannerisms, and total T-score (all
P< 0.05) indicating changes in social
behavioral functioning over time
(Table III). The treatment-by-visit effect
was also significant in social communi-
cation, social motivation, social cogni-
tion and total T-score (P< 0.01)
(Table III). The goodness of fit results
using the Wald chi-squared test suggest
that all the coefficients in the model are
jointly statistically significant in each
case except when social awareness is the
dependent variable (Table III).

Initiation was the only skill assessed
by the BRIEF that was significantly
different between groups when both
testosterone treatment and dependency
between repeated observations were
factored into the model (P¼ 0.05,
Treatment*Visit, Table IV).

In the CBCL data, if only the effect
of testosterone treatment is factored into
the model, there is a significant differ-
ence in the scores between the treated
and untreated groups for school behav-
ior (P¼ 0.01) and social problems
(P¼ 0.03) (Table II). When both the
ixed-Effect Model Results (Includes Repeat

Treated group Unt

SD N Mean

13.52 54 60.19
13.25 54 59.49
11.77 54 60.72
13.22 54 60.74

12.52 32 59.55

10.74 34 35.92
4.93 41 62.19

evel.
treatment group and number of visits are
considered, the treated group has sig-
nificantly higher scores over time at the
P< 0.10 level and has significantly lower
scores in somatic complaint, aggressive
behavior, externalizing problems, and
affective problems over time compared
to the control group while differences in
internalizing problems approached sig-
nificance (P¼ 0.105) (Table IV).

The repeated measures model
largely confirms the results for the
non-repeated measures analysis
(Table V). In some cases, examining
the testosterone treatment by visit
interaction allows for more significant
findings for differences between the
groups over time than seen in the
non-repeated measures analysis. All
statistical analyses, including significant
and non-significant findings, can be
found in supplemental table SI.
DISCUSSION

These results provide additional support
for the positive and sustained effects of
short-course androgen therapy on neu-
rodevelopmental outcome previously
observed in the same cohort of patients
with 47, XXY at 36 and 72 months of
age [Samango-Sprouse et al., 2013b]. In
the previous study, boys with 47, XXY
who received EHT had improved
speech and language development,
reading skills, verbal and non-verbal
intellectual quotients, and neuromotor
ed Observations)

reated group

SD N P-value

16.16 102 0.001a

15.48 102 0.001a

14.41 102 0.005a

16.42 102 0.002a

10.82 42 0.05a

9.06 49 0.01a

9.5 53 0.03*



TABLE III. Results of Random Mixed Effects Model for SRS

Dependent variable

Independent variable
Social

awareness
Social

cognition
Social

communication
Social

motivation
Autistic

mannerisms
Total
T-score

Testosterone treatment �3.6437 �8.2512* �9.8382* �8.1500* �9.1574* �9.6338*

(�1.16) (�3.04) (�3.4) (�2.89) (�2.8) (�3.4)
Visit 0.1383 �0.9299 �1.6171* �2.5397* �1.9232* �2.0973*

�0.16 (�1.34) (�2.12) (�3.46) (�2.16) (�2.86)
Treatment*visit 1.3966 3.2560* 3.5293* 3.85324* 2.3010* 4.0713*

�0.93 �2.75 �2.72 �3.09 �1.52 �3.26
Constant 52.2394* 60.7300* 61.2159* 61.6213* 62.391* 62.109*

�26.33 �29.69 �30.15 �30.28 �29.02 �30.07
Regression statistics
Number of obs 156 156 156 156 156 156
Number of groups 79 79 79 79 79 79
R- squared (within) 0.026 0.1103 0.1418 0.1743 0.084 0.1643
R- squared (between) 0.003 0.0154 0.0079 0.0003 0.0422 0.0067
R- squared (overall) 0.006 0.022 0.0286 0.0168 0.0723 0.0201
Wald chi2(3) 2.11 10.39 12.24 14.85 10.47 14.67
Prob > chi2 0.55 0.0155 0.0066 0.002 0.015 0.0021

These are the estimated coefficients for the independent variables and the constant with the z statistic in parentheses.
*Denotes significance at the 5% significance level.
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planning and execution. There have
been no adverse effects or negative
health outcomes reported in our pop-
ulation of boys with 47, XXY who
received early short-course androgen
therapy.

In the present study, boys who
received EHT had significantly fewer
behavioral problems and improved so-
cial behavioral skills that have been
commonly associated with the 47,
XXY genotype. These include exter-
nalizing behavior problems, aggressive
behaviors, schooling behavior and af-
fective problems. Somatic complaints
were also reported by the parents to be
significantly reduced in the EHT group.
Somatic symptoms such as headaches
and stomach aches are common in
children with anxiety, language-based
learning disabilities and social commu-
nication difficulties [Beidel et al., 1991;
Dorn et al., 2003]. Studies have also
found children that frequently present
with somatic complaints are at a higher
risk for internalizing disorders and
anxiety [Masi et al., 1999], which, in
turn, can have an adverse effect on
school performance and school behavior
from childhood through adolescence
[Honjo et al., 2001].

The most significant behavioral
differences observed in this study be-
tween the EHT and non-EHT group
were within social domains, including
social cognition, communication and
overall social problems. Given the
atypical social behaviors associated
with Autism Spectrum Disorders it is
not surprising that boys who received
EHTalso had significantly fewer autistic
mannerisms indicated by the SRS-2
questionnaire. Recent studies have
found an increased incidence of Autism
Spectrum Disorders in 47, XXY boys;
however, several of these studies may be
limited by small sample sizes, varying
screening methods, and incomplete
evaluation of family history of learning
disabilities and comorbid psychosocial
disorders [Bruining et al., 2009; Bishop
et al., 2011; Samango-Sprouse et al.,
2014]. This study suggests that early
androgen therapy in boys who are
androgen deficient may reduce the
presentation of atypical social behaviors
associated with Autism Spectrum Dis-
orders in children with 47, XXY.
Conversely, Baron-Cohen has proposed
that higher levels of androgens prenatally
may predispose boys to ASD [Baron-
Cohen et al., 2005], however the
interaction between androgens and
social behavior is not well understood.
Further research is warranted to deter-
mine what hormonal factors, if any, may
mediate the incidence of ASD in
conjunction with increased androgen
production. Additionally, the levels of
androgen production during a preg-
nancy with 46, XY and 47, XXY have
not been well investigated either. It is
intriguing to consider the neurobiolog-
ical interaction between prenatal levels
of androgens, XXY and neurodevelop-
mental outcome especially in social
behavior and pragmatic language.

Children who had received EHT in
this study were also reported to have
better initiation skills compared to the
untreated group. This executive func-
tioning skill, involving the ability to
independently initiate tasks, responses
and problem- solving skills, is believed



TABLE IV. Results of Random Mixed Effects Model for CBCL

Dependent variable

Independent variable School
Somatic
complain

Social
problems

Aggressive
behavior

Externalizing
problems

Affective
problems

Testosterone treatment 9.123a 1.1817 �5.5216a 2.2837 2.8261 0.065
�2.56 �0.37 (�2.15) �0.8 �0.74 �0.02

Visit 1.244 2.0239 0.05532 1.625 2.2303 3.0029a

�0.96 �1.46 �0.06 �1.35 �1.46 �2.44
TreatmentaVisit �2.1418 �3.213b �0.4037 �3.4847a �4.589a �3.174b

(�1.21) (�1.73) (�0.31) (�2.16) (�2.25) (�1.93)
Constant 33.757 56.721 61.129 54.867 50.560 56.148

�14.46 �25.05 �33.99 �27.46 �18.88 �26.14
Regression Statistics

Number of obs 83 94 94 94 94 94
Number of groups 52 57 57 57 57 57
R-squared (within) 0.0445 0.0485 0 0.0693 0.0988 0.1126
R-squared (between) 0.1049 0.0509 0.1834 0.064 0.0464 0.0763
R-squared (overall) 0.0952 0.0992 0.2191 0.111 0.0913 0.1287
Wald chi2(3) 7.23 5.77 10.49 6.79 6.76 9.56
Prob > chi2 0.0649 0.1233 0.0149 0.0788 0.0798 0.0227

These are the estimated coefficients for the independent variables and the constant with the z statistic in parentheses.
aDenotes significance at the 5% significance level.
bDenotes significance at the 10% significance level.

6 ARTICLE
to be subsumed under the frontal lobe
function of the brain [Miyake et al.,
2000]. Several MRI studies of males
with XXY have revealed atypical fea-
tures of lobe morphology, cortical
TABLE V. Two-sam

Test

Subtest Mean

SRS
Total T- score* 52.59
Social communication 52.14
Autistic mannerism* 51.79
Social cognition* 52.52

BRIEF
Initiation 53.05

CBCL
School 41.61
Social problems* 54.58

P-value from Mann–Whitney Test.
*Not normally distrubted.
thickness and gray and white matter
development associated with deficits in
executive function [Giedd et al., 2006;
Giedd et al., 2007; Lenroot et al., 2009;
Lee et al., 2011; Mueller et al., 2011]. In
ple mean comparison results (excludes repe

Treated group Unt

SD N Mean

9.96 29 60.3
10.17 29 59.33
8.43 29 61.19
11.51 29 60.21

12.29 20 58.97

10.64 18 35.06
4.92 24 61.44
a large quantitative MRI study of 42
young boys with 47, XXY, cortical
thinning was pronounced in the left
inferior frontal, temporal, and inferior
parietal lobes compared to 46, XY
ated observations)

reated group

SD N P-value

16.28 57 0.062
15.45 57 0.026
15.87 57 0.018
16.05 57 0.044

10.73 30 0.078

9.2 32 0.039
8.99 34 0.001
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controls. Cortical maturation and gray
matter volume in these areas are known
to be influenced by testosterone levels
throughout childhood and adolescence
and have been linked to language
development, mood regulation, and
impulsivity in normally developing
males [Binder et al., 2000; Giedd
et al., 2007; Raznahan et al., 2010]

Although the neurobiological
mechanisms of androgen replacement
in children with 47, XXY is unclear, the
presence of androgen receptors inmulti-
ple cortical regions of the brain and the
impact of androgens on brain structure
and development has been reported in
several studies of 46, XY and 47, XXY
adolescents and adults [Patwardhan
et al., 2000; Giedd et al., 2006; Lenroot
et al., 2009; Raznahan et al., 2010].
Patwardhan et al. [2000] found that men
with 47, XXY who received testoster-
one treatment during puberty had
increased grey matter volume in the
left temporal lobe and improved verbal
fluency, associated with this brain re-
gion, compared to XXY controls who
did not receive treatment [Patwardhan
et al., 2000]. Our results suggest that
early androgen therapy (supplementing
the diminished neonatal surge reported
in XXY males) may have pervasive and
sustained effects on multiple aspects of
neurodevelopment similar to those that
have been documented previously in
testosterone- treated males with 47,
XXY. Future research is required to
determine the optimal timing, long-
term effects and biological mechanisms
of early hormonal treatment in children
with 47, XXY.

There are limitations of this study,
however, that should also be taken into
consideration. The decision to receive
early hormonal replacement was made
on an individual basis exclusively
between parents and their pediatric
endocrinologist. Although the socio-
demographic and educational informa-
tion of families are similar in the two
groups (reflective of the affordability,
availability and decision to receive
EHT) there may be confounding
factors that we were unable to account
for, resulting in the significant behav-
ioral differences observed between the
two groups. For example, the clinical
consideration of testosterone based on
phallic size may lead to selection bias,
with the more androgen-deficient
children (resulting in a smaller phallus)
more likely to receive treatment. Penis
size and androgen levels, particularly in
the untreated group, were not typically
reported in the medical records for us
to test this. However, if boys who
received treatment were preferentially
selected based on smaller phallus size,
one might expect this group to have
more severe behavioral outcomes as a
result of lower androgen levels com-
pared to the untreated group. If this
were the case, the significant behavioral
improvements in the treated group
would provide further support for the
potential positive impact of early
androgen replacement on behavioral
development in boys with 47, XXY.
Despite the strong associations between
EHT and positive behavioral outcomes
in this study, causal relationships are
unable to be drawn, particularly given
the retrospective design of this study.
This further supports the need for
continued research into the impact of
possible early biological treatment
interventions in boys with 47, XXY.
CONCLUSION

This is now the third study (two being
within the same cohort of boys with
47, XXY and the other being in a
cohort of boys with 49, XXXXY) to
reveal positive effects of early androgen
replacement on the neurodevelopment
of boys with X- chromosome aneu-
ploidies [Samango-Sprouse et al., 2011;
Samango-Sprouse et al., 2013b]. This
study reveals, for the first time, the
reduction of several characteristic fea-
tures including affective problems,
aggression and atypical social behaviors
in children with 47, XXY who
received early testosterone therapy
during infancy. Additional research is
required to determine the neurobio-
logical mechanisms, optimal timing
and later developmental effects of early
androgen replacement in boys with 47,
XXY.
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